Progressive spinal axonal degeneration and slowness in ALS2-deficient mice.
نویسندگان
چکیده
OBJECTIVE Homozygous mutation in the ALS2 gene and the resulting loss of the guanine exchange factor activity of the ALS2 protein is causative for autosomal recessive early-onset motor neuron disease that is thought to predominantly affect upper motor neurons. The goal of this study was to elucidate how the motor system is affected by the deletion of ALS2. METHODS ALS2-deficient mice were generated by gene targeting. Motor function and upper and lower motor neuron pathology were examined in ALS2-deficient mice and in mutant superoxide dismutase 1 (SOD1) mice that develop ALS-like disease from expression of an ALS-linked mutation in SOD1. RESULTS ALS2-deficient mice demonstrated progressive axonal degeneration in the lateral spinal cord that is also prominent in mutant SOD1 mice. Despite the vulnerability of these spinal axons, lower motor neurons in ALS2-deficient mice were preserved. Behavioral studies demonstrated slowed movement without muscle weakness in ALS2(-/-) mice, consistent with upper motor neuron defects that lead to spasticity in humans. INTERPRETATION The combined evidence from mice and humans shows that deficiency in ALS2 causes an upper motor neuron disease that in humans closely resembles a severe form of hereditary spastic paralysis, and that is quite distinct from amyotrophic lateral sclerosis.
منابع مشابه
Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking.
ALS2/alsin is a member of guanine nucleotide exchange factors for the small GTPase Rab5 (Rab5GEFs), which act as modulators in endocytic pathway. Loss-of-function mutations in human ALS2 account for a number of juvenile recessive motor neuron diseases (MNDs). However, the normal physiological role of ALS2 in vivo and the molecular mechanisms underlying motor dysfunction are still unknown. To ad...
متن کاملAls2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.
Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs...
متن کاملLoss of ALS2/Alsin Exacerbates Motor Dysfunction in a SOD1H46R-Expressing Mouse ALS Model by Disturbing Endolysosomal Trafficking
BACKGROUND ALS2/alsin is a guanine nucleotide exchange factor for the small GTPase Rab5 and involved in macropinocytosis-associated endosome fusion and trafficking, and neurite outgrowth. ALS2 deficiency accounts for a number of juvenile recessive motor neuron diseases (MNDs). Recently, it has been shown that ALS2 plays a role in neuroprotection against MND-associated pathological insults, such...
متن کاملIntramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia.
Degeneration of peripheral motor axons is a common feature of several debilitating diseases including complicated forms of hereditary spastic paraplegia. One such form is caused by loss of the mitochondrial energy-dependent protease paraplegin. Paraplegin-deficient mice display a progressive degeneration in several axonal tracts, characterized by the accumulation of morphological abnormal mitoc...
متن کاملMice deficient in Epg5 exhibit selective neuronal vulnerability to degeneration
The molecular mechanism underlying the selective vulnerability of certain neuronal populations associated with neurodegenerative diseases remains poorly understood. Basal autophagy is important for maintaining axonal homeostasis and preventing neurodegeneration. In this paper, we demonstrate that mice deficient in the metazoan-specific autophagy gene Epg5/epg-5 exhibit selective damage of corti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of neurology
دوره 60 1 شماره
صفحات -
تاریخ انتشار 2006